Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.03.14.532590

ABSTRACT

The COVID-19 pandemic has motivated research on the persistence of infectious SARS-CoV-2 in environmental reservoirs such as surfaces and water. Viral persistence data has been collected for SARS-CoV-2 and its surrogates, including bacteriophage Phi6. Despite its wide use, no side-by-side comparisons between Phi6 and SARS-CoV-2 exist. Here, we quantified the persistence of SARS-CoV-2 and Phi6 on surfaces (plastic and metal) and in water and evaluated the influence that the deposition solution has on viral persistence by using four commonly used deposition solutions: two culture media (DMEM and Tryptone Soya Broth (TSB)), Phosphate Buffered Saline (PBS), and human saliva. Phi6 remained infectious in water significantly longer than SARS-CoV-2, having a half-life of 27 hours as compared with 15 hours for SARS-CoV-2. The persistence of viruses on surfaces was significantly influenced by the virus used and the deposition solution, but not by the surface material. Phi6 remained infectious significantly longer than SARS-CoV-2 when the inoculation solution was culture media (DMEM, TSB) and saliva. Using culture media and saliva led to half-lives between 9 hours and 2 weeks for Phi6, as compared to 0.5 to 2 hours for SARS-CoV-2. Using PBS as a deposition solution led to half-lives shorter than 4 hours for both viruses on all surfaces. Our results showed that, although it has been frequently used as a surrogate for coronaviruses, bacteriophage Phi6 is not an adequate surrogate for studies quantifying SARS-CoV-2 persistence, as it over-estimates infectiousness. Additionally, our findings reveal the need of using adequate deposition solutions when evaluating viral persistence on surfaces.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.05.455040

ABSTRACT

The role of human saliva in aerosol-based transmission of SARS-CoV-2 has highlighted the need to understand the potential of oral hygiene products to inactivate the virus. Here we examined the efficacy of mouthwashes containing cetylpyridinium chloride (CPC) or chlorhexidine (CHX) in inactivating SARS-CoV-2. After 30 seconds contact under standard aqueous conditions CPC mouthwashes achieved a [≥]4.0log10 PFU/mL reduction in SARS-CoV-2 (USA-WA1/2020) titres whereas comparable products containing CHX achieved <2.0log10 PFU/mL reduction. Further testing with CPC mouthwashes demonstrated efficacy against multiple SARS-CoV-2 variants, with inactivation below the limit of detection observed against the Alpha (B.1.1.7), Beta (B.1.351) and Gamma (P.1) variants. Virucidal efficacy of CPC mouthwash was also observed in the presence of human saliva with the product delivering [≥]4.0log10 PFU/mL reduction in SARS-CoV-2 titres after 30 seconds providing additional evidence for the virucidal efficacy of CPC mouthwashes under simulated physiological conditions. Together these data suggest CPC-based mouthwashes are effective at inactivating SARS-CoV-2 and further supports the use of mouthwash to mitigate the risk of transmission during dentistry procedures.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.23.449594

ABSTRACT

Companion animals are susceptible to SARS-CoV-2 infection and sporadic cases of pet infections have occurred in the United Kingdom. Here we present the first large-scale serological survey of SARS-CoV-2 neutralising antibodies in dogs and cats in the UK. Results are reported for 688 sera (454 canine, 234 feline) collected by a large veterinary diagnostic laboratory for routine haematology during three time periods; pre-COVID-19 (January 2020), during the first wave of UK human infections (April-May 2020) and during the second wave of UK human infections (September 2020-February 2021). Both pre-COVID-19 sera and those from the first wave tested negative. However, in sera collected during the second wave, 1.4% (n=4) of dogs and 2.2% (n=2) cats tested positive for neutralising antibodies. The low numbers of animals testing positive suggests pet animals are unlikely to be a major reservoir for human infection in the UK. However, continued surveillance of in-contact susceptible animals should be performed as part of ongoing population health surveillance initiatives.


Subject(s)
COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.16.440173

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a primarily respiratory disease with variable clinical courses for which animal models are needed to gather insights into the pathogenesis of its causative virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in human patients. SARS-CoV-2 not only affects the respiratory tract but also the central nervous system (CNS), leading to neurological symptoms such as loss of smell and taste, headache, fatigue or severe complications like cerebrovascular diseases. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a well-known model of SARS-CoV-2 infection. In the present study, it served to investigate the spatiotemporal distribution and pathomorphological features in the CNS following intranasal infection with relatively low SARS-CoV-2 doses and after prior influenza A virus infection. In K18-hACE2 mice, SARS-CoV-2 was found to frequently spread to and within the CNS during the later phase (day 7) of infection. Infection was restricted to neurons and appeared to first affect the olfactory bulb and spread from there mainly in basally orientated regions in the brain and into the spinal cord, in a dose dependent manner and independent of ACE2 expression. Neuronal infection was not associated with cell death, axonal damage or demyelination. However, microglial activation, microgliosis and a mild macrophage and T cell dominated inflammatory response was consistently observed. This was accompanied by apoptotic death of endothelial, microglial and immune cells, without evidence of viral infection of glial cells, endothelial cells and leukocytes. Taken together, microgliosis and immune cell apoptosis indicate a potential important role of microglial cells for the pathogenesis and viral effect in COVID-19 and possible impairment of neurological functions, especially in long COVID. These data may also be informative for the selection of therapeutic candidates, and broadly support investigation of agents with adequate penetration into relevant regions of the CNS.


Subject(s)
Respiratory Tract Diseases , Headache , Severe Acute Respiratory Syndrome , COVID-19 , Tumor Virus Infections , Cerebrovascular Disorders , Virus Diseases , Nervous System Diseases , Nerve Degeneration , Demyelinating Diseases , Fatigue
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-350333.v1

ABSTRACT

In the context of the coronavirus disease 2019 (COVID-19) pandemic there has been an increase of the use of antigen-detection rapid diagnostic tests (Ag-RDT). The performance of Ag-RDT vary greatly between manufacturers and evaluating their analytical limit of detection (LOD) has become high priority. Here we describe a manufacturer-independent evaluation of the LOD of 19 marketed Ag-RDT using live SARS-CoV-2 spiked in different matrices: direct culture supernatant, a dry swab, and a swab in Amies. Additionally, the LOD using dry swab was investigated after 7 days’ storage at -80°C of the SARS-CoV-2 serial dilutions. An LOD of ≈ 5.0 x 10 2 pfu/ml (1.0 x 10 6 genome copies/ml) in culture media is defined as acceptable by the World Health Organization. Fourteen of nineteen Ag-RDTs (ActiveXpress, Espline, Excalibur, Innova, Joysbio, Mologic, NowCheck, Orient, PanBio, RespiStrip, Roche, Standard-F, Standard-Q and Sure-Status) exceeded this performance criteria using direct culture supernatant applied to the Ag-RDT. Six Ag-RDT were not compatible with Amies media and a decreased sensitivity of 2 to 20-fold was observed for eleven tests on the stored dilutions at -80°C for 7 days. Here, we provide analytical sensitivity data to guide appropriate test and sample type selection for use and for future Ag-RDT evaluations. 201/200


Subject(s)
COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.30.437704

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the regional and global sequence landscapes. Several variants have been labelled as Variants of Concern (VOCs) because of perceptions or evidence that these may have a transmission advantage, increased risk of morbidly and/or mortality or immune evasion in the context of prior infection or vaccination. Placing the VOCs in context and also the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Sequences of SARS-CoV-2 in nasopharyngeal swabs from hospitalised patients in the UK were determined and virus isolated. The data indicated the virus existed as a population with a consensus level and non-synonymous changes at a minor variant. For example, viruses containing the nsp12 P323L variation from the Wuhan reference sequence, contained minor variants at the position including P and F and other amino acids. These populations were generally preserved when isolates were amplified in cell culture. In order to place VOCs B.1.1.7 (the UK Kent variant) and B.1.351 (the South African variant) in context their growth was compared to a spread of other clinical isolates. The data indicated that the growth in cell culture of the B.1.1.7 VOC was no different from other variants, suggesting that its apparent transmission advantage was not down to replicating more quickly. Growth of B.1.351 was towards the higher end of the variants. Overall, the study suggested that studying the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants.


Subject(s)
COVID-19 , Infections
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.19.21253950

ABSTRACT

In the context of the coronavirus disease 2019 (COVID-19) pandemic there has been an increase of the use of antigen-detection rapid diagnostic tests (Ag-RDT). The performance of Ag-RDT vary greatly between manufacturers and evaluating their analytical limit of detection (LOD) has become high priority. Here we describe a manufacturer-independent evaluation of the LOD of 19 marketed Ag-RDT using live SARS-CoV-2 spiked in different matrices: direct culture supernatant, a dry swab, and a swab in Amies. Additionally, the LOD using dry swab was investigated after 7 days storage at -80{degrees}C of the SARS-CoV-2 serial dilutions. An LOD of {approx} 5.0 x 102 pfu/ml (1.0 x 106 genome copies/ml) in culture media is defined as acceptable by the World Health Organization. Fourteen of nineteen Ag-RDTs (ActiveXpress, Espline, Excalibur, Innova, Joysbio, Mologic, NowCheck, Orient, PanBio, RespiStrip, Roche, Standard-F, Standard-Q and Sure-Status) exceeded this performance criteria using direct culture supernatant applied to the Ag-RDT. Six Ag-RDT were not compatible with Amies media and a decreased sensitivity of 2 to 20-fold was observed for eleven tests on the stored dilutions at -80{degrees}C for 7 days. Here, we provide analytical sensitivity data to guide appropriate test and sample type selection for use and for future Ag-RDT evaluations.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.10.434447

ABSTRACT

The ability of acquired immune responses against SARS-CoV-2 to protect after subsequent exposure to emerging variants of concern (VOC) such as B1.1.7 and B1.351 is currently of high significance. Here, we use a hamster model of COVID-19 to show that prior infection with a strain representative of the original circulating lineage B of SARS-CoV-2 induces protection from clinical signs upon subsequent challenge with either B1.1.7 or B1.351 viruses, which recently emerged in the UK and South Africa, respectively. The results indicate that these emergent VOC may be unlikely to cause disease in individuals that are already immune due to prior infection, and this has positive implications for overall levels of infection and COVID-19 disease.


Subject(s)
COVID-19 , Infections
9.
Jordan J. Clark; Rebekah Penrice-Randal; Parul Sharma; Anja Kipar; Xiaofeng Dong; Andrew D. Davidson; Maia Kavanagh Williamson; David A Matthews; Lance Turtle; Tessa Prince; Grant Hughes; Edward I Patterson; Krishanthi Subramaniam; Jo Sharp; Lynn McLaughlin; En-Min Zhou; Joseph D Turner; Amy E Marriott; Stefano Colombo; Shaun Pennington; Giancarlo Biagini; Andrew Owen; Julian Alexander Hiscox; James P Stewart; Jinghe Huang; Auke C Reidinga; Daisy Rusch; Kim CE Sigaloff; Renee A Douma; Lianne de Haan; Egill A Fridgeirsson; Niels C Gritters van de Oever; Roger JMW Rennenberg; Guido van Wingen; Marcel JH Aries; Martijn Beudel; ítalo Karmann Aventurato; Mariana Rabelo de Brito; Marina Koutsodontis Machado Alvim; José Roberto da Silva Junior; Lívia Liviane Damião; Maria Ercilia de Paula Castilho Stefano; Iêda Maria Pereira de Sousa; Elessandra Dias da Rocha; Solange Maria Gonçalves; Luiz Henrique Lopes da Silva; Vanessa Bettini; Brunno Machado de Campos; Guilherme Ludwig; Rosa Maria Mendes Viana; Ronaldo Martins; Andre S. Vieira; José Carlos Alves-Filho; Eurico de Arruda Neto; Adriano Sebollela; Fernando Cendes; Fernando Q Cunha Sr.; André Damásio; Marco Aurélio Ramirez Vinolo; Carolina Demarchi Munhoz; Stevens K Rehen Sr.; Thais Mauad; Amaro Nunes Duarte-Neto; Luiz Fernando Ferraz da Silva; Marisa Dolhnikoff; Paulo Saldiva; Alexandre Todorovic Fabro; Alessandro S Farias; Pedro Manoel M. Moraes-Vieira; José Luiz Proença Módena; Clarissa Lin Yasuda; Marcelo A. Mori; Thiago Mattar Cunha; Daniel Martins-de-Souza.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.334532

ABSTRACT

COVID-19 is a spectrum of clinical symptoms in humans caused by infection with SARS-CoV-2, a recently emerged coronavirus that has rapidly caused a pandemic. Coalescence of a second wave of this virus with seasonal respiratory viruses, particularly influenza virus is a possible global health concern. To investigate this, transgenic mice expressing the human ACE2 receptor driven by the epithelial cell cytokeratin-18 gene promoter (K18-hACE2) were first infected with IAV followed by SARS-CoV-2. The host response and effect on virus biology was compared to K18-hACE2 mice infected with IAV or SARS-CoV-2 only. Infection of mice with each individual virus resulted in a disease phenotype compared to control mice. Although, SARS-CoV-2 RNA synthesis appeared significantly reduced in the sequentially infected mice, these mice had a more rapid weight loss, more severe lung damage and a prolongation of the innate response compared to singly infected or control mice. The sequential infection also exacerbated the extrapulmonary manifestations associated with SARS-CoV-2. This included a more severe encephalitis. Taken together, the data suggest that the concept of "twinfection" is deleterious and mitigation steps should be instituted as part of a comprehensive public health response to the COVID-19 pandemic.


Subject(s)
Lung Diseases , Infections , Encephalitis , Weight Loss , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL